Chronic insulin treatment suppresses PTP1B function, induces increased PDGF signaling, and amplifies neointima formation in the balloon-injured rat artery.
نویسندگان
چکیده
We tested the hypothesis that hyperinsulinemia induces the suppression of protein tyrosine phosphatase 1B (PTP1B) function, leading to enhanced PDGF receptor (PDGFR) signaling and neointimal hyperplasia. Rats were implanted with insulin-releasing pellets or sham pellets. Blood glucose levels, insulin levels, food and water intake, body weights, and blood pressures were measured. Neointimal hyperplasia was assessed by computerized morphometry 14 days after carotid balloon injury. PTP1B protein expression in injured arteries was determined via Western blot analysis, whereas PTP1B activity was determined via an immunophosphatase assay. Serum insulin levels were two- to threefold greater in hyperinsulinemic rats, whereas systolic blood pressures, food and water intake, serum triglyceride levels, plasma cortisol levels, and urinary catecholamine levels were not affected. Fourteen days after injury, neointima-to-media area ratios were 0.89 +/- 0.23 and 1.35 +/- 0.22 in control and hyperinsulinemic rats, respectively (P < 0.01). PTP1B protein levels and total PTP1B activity in injured carotid arteries from the insulin-treated group were significantly decreased 7 or 14 days after injury, whereas PTP1B specific activity was decreased only 14 days after injury. These findings were associated with decreased PTP1B mRNA levels and increased PDGFR tyrosyl phosphorylation in insulin-treated rats. These observations support the hypothesis that hyperinsulinemia induces the suppression of PTP1B function, leading to enhanced PDGFR signaling and neointimal hyperplasia.
منابع مشابه
Chronic insulin treatment amplifies PDGF-induced motility in differentiated aortic smooth muscle cells by suppressing the expression and function of PTP1B.
Hyperinsulinemia plays a major role in the pathogenesis of vascular disease. Restenosis occurs at an accelerated rate in hyperinsulinemia and is dependent on increased vascular smooth muscle cell movement from media to neointima. PDGF plays a critical role in mediating neointima formation in models of vascular injury. We have reported that PDGF increases the levels of protein tyrosine phosphata...
متن کاملCounter-regulatory function of protein tyrosine phosphatase 1B in platelet-derived growth factor- or fibroblast growth factor-induced motility and proliferation of cultured smooth muscle cells and in neointima formation.
OBJECTIVE We have previously reported that vascular injury or treatment of cultured vascular smooth muscle cells with platelet-derived growth factor-BB (PDGF-BB) or fibroblast growth factor-2 (FGF2) increases the levels of protein tyrosine phosphatase (PTP)1B. The current study was designed to test the hypothesis that PTP1B attenuates PDGF- or FGF-induced motility and proliferation of cultured ...
متن کاملKallistatin stimulates vascular smooth muscle cell proliferation and migration in vitro and neointima formation in balloon-injured rat artery.
Kallistatin, a serine proteinase inhibitor (serpin), is expressed in the endothelial and smooth muscle cells of blood vessels. The potential function of kallistatin in vascular biology was investigated by studying its role in the proliferation and migration of cultured primary aortic vascular smooth muscle cells (VSMCs) in vitro and in neointima formation in rat artery after balloon angioplasty...
متن کاملTranilast suppresses vascular chymase expression and neointima formation in balloon-injured dog carotid artery.
BACKGROUND Activation of vascular chymase plays a major role in myointimal hypertrophy after vascular injury by augmenting the production of angiotensin (ANG) II. Because chymase is synthesized mainly in mast cells, we assumed that the chymase-dependent ANG II formation could be downregulated by tranilast, a mast cell-stabilizing antiallergic agent. We have assessed inhibitory effects of tranil...
متن کاملData on the involvement of Meox1 in balloon-injury-induced neointima formation of rats
In the previous report, Meox1 was found to promote SMCs phenotypic modulation and injury-induced vascular remodeling by regulating the FAK-ERK1/2-autophagy signaling cascade (Wu et al., 2017) [1]. Here, we presented new original data on the involvement of Mesoderm/mesenchyme homeobox gene l (Meox1) in balloon-injury-induced neointima formation of rat. In rat carotid artery balloon injury model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 296 1 شماره
صفحات -
تاریخ انتشار 2009